Point mutation at single tyrosine residue of novel oncogene NOK abrogates tumorigenesis in nude mice.

نویسندگان

  • Yue Chen
  • Ying-Hua Li
  • Xi-Ping Chen
  • Li-Min Gong
  • Shu-Ping Zhang
  • Zhi-Jie Chang
  • Xiu-Fang Zhang
  • Xin-Yuan Fu
  • Li Liu
چکیده

Receptor protein-tyrosine kinases (RPTKs) are tightly regulated during normal cellular processes including cell growth, differentiation, and metabolism. Recently, a RPTK-like molecule named novel oncogene with kinase-domain (NOK) has been cloned and characterized. Overexpression of NOK caused severe cellular transformation as well as tumorigenesis and metastasis in nude mice. In the current study, we generated two tyrosine-->phenylalanine (Y-->F) point mutations (Y327F and Y356F) within the endodomain of NOK that are well conserved in many RPTK subfamilies and are the potential tyrosine phosphorylation sites important for major intracellular signaling. Using BaF3 cells stably expressing the ectodomain of mouse erythropoietin receptor, and the transmembrane and endodomain of NOK (BaF3-E/N), we were able to show that point mutations at either Y327 or Y356 dramatically blocked cellular transformation by NOK as examined by colony formation and cellular DNA synthesis. In addition, tumorigenesis induced by BaF3-E/N was completely abrogated upon the introduction of either single mutation. Importantly, signaling studies revealed that the activation of extracellular signal-regulated kinase was inhibited by Y356F and was significantly reduced by Y327F. Both mutations significantly impaired Akt phosphorylation. Interestingly, both mutations did not affect the kinase activity of NOK. Moreover, apoptotic analysis revealed that both mutations accelerated cell death by activating caspase-3-mediated pathways. Thus, our study shows that these potential tyrosine phosphorylation sites may play critical roles in NOK-mediated tumorigenesis both in vitro and in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nude Mice Factor Receptors Induces Tumorigenesis and Metastasis in with Platelet- Derived Growth Factor/Fibroblast Growth A Novel Protein Tyrosine Kinase NOK that Shares Homology

Receptor protein tyrosine kinases (RPTKs) play important roles in the regulation of a variety of cellular processes including cell migration, proliferation, and protection from apoptosis. Here, we report the identification and characterization of a novel RPTK-like molecule that has a critical role in induction of tumorigenesis and metastasis and is termed Novel Oncogene with Kinase-domain (NOK)...

متن کامل

A novel protein tyrosine kinase NOK that shares homology with platelet- derived growth factor/fibroblast growth factor receptors induces tumorigenesis and metastasis in nude mice.

Receptor protein tyrosine kinases (RPTKs) play important roles in the regulation of a variety of cellular processes including cell migration, proliferation, and protection from apoptosis. Here, we report the identification and characterization of a novel RPTK-like molecule that has a critical role in induction of tumorigenesis and metastasis and is termed Novel Oncogene with Kinase-domain (NOK)...

متن کامل

NOK mediated mitogenic signaling is altered by P203L and V395I mutations.

The novel oncogene with kinase-domain (NOK), is an atypical receptor protein tyrosine kinase with potent oncogenic potential. In the current study, we generated two point mutations (P203L and V395I) on NOK gene. NOK(P203L) is identical to serine/threonine/tyrosine kinase 1 (STYK1), the aliases of NOK, while the V395I mutation was recovered from human glioblastoma. Both mutations did not impair ...

متن کامل

A point mutation in the MET oncogene abrogates metastasis without affecting transformation.

The MET oncogene encodes the tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF), known to stimulate invasive growth of epithelial cells. MET is overexpressed in a significant percentage of human cancers and is amplified during the transition between primary tumors and metastasis. To investigate whether this oncogene is directly responsible for the acquisition of the meta...

متن کامل

Supernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer In-vitro and In-vivo

Halophilic archaea are known as the novel producers of natural products and their supernatant metabolites could have cytotoxic effects on cancer cells. In the present study, we screened the anticancer potential of supernatant metabolites from eight native haloarchaeal strains obtained from a culture collection in Iran. Five human cancer cell lines including breast, lung, prostate and also human...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 65 23  شماره 

صفحات  -

تاریخ انتشار 2005